Главная   Добавить в избранное Объектно-ориентированная СУБД (прототип) | реферат


Рефераты, дипломные работы, курсовые работы, доклады, сочинения, шпаргалки, изложения, топики, бестселлеры - скачать бесплатно Рефераты, дипломные работы, курсовые работы, доклады, шпаргалки и т.п - у Нас можно скачать бесплатно.
 Поиск: 
Категории работ:
Рефераты
Дипломные работы
Курсовые работы
Шпаргалки
Доклады
Сочинения
Изложения
Топики
Бестселлеры
Авторские материалы
Отчеты

 

 


Объектно-ориентированная СУБД (прототип) - реферат


Категория: реферат
Рубрика: Информатика, программирование
Размер файла: 146 Kb
Количество загрузок:
2
Количество просмотров:
421
Описание работы: реферат на тему Объектно-ориентированная СУБД (прототип)
Смотреть
Скачать


Service).
* Служба Безопасности Объектов (Object Security Service).
* Служба Объектного Времени (Time Service).

Общие Средства заполняют концептуальное пространство между ORB и объектными службами с одной стороны, и прикладными объектами с другой. Таким образом, ORB обеспечивает базовую инфраструктуру, Объектные Службы – фундаментальные объектные интерфейсы, а задача Общих Средств – поддержка интерфейсов сервисов высокого уровня. Общие Средства подразделяются на две категории: "горизонтальные" и "вертикальные" наборы средств. "Горизонтальный" набор средств определяет операции, используемые во многих системах, и не зависящие от конкретных прикладных систем. "Вертикальный" набор средств представляет технологию поддержки конкретной прикладной системы (вертикального сегмента рынка), такого, как здравоохранение, производство, управление финансовой деятельностью, САПР и т.д.

* Средства поддержки пользовательского интерфейса (User Interface Common Facilities)
* Средства управления информацией (Information Management Common Facilities)
* Средства управления системой (System Management Common Facilities)
* Средства управления задачами (Task Management Common Facilities)
* Вертикальные общие средства (Vertical Common Facilities)
* Вертикальные общие средства предназначены для использования в качестве стандартных для обеспечения интероперабельности в специфических прикладных областях.
* Поддержка интероперабельности брокеров в стандарте CORBA 2.0

О роли СУООБД в архитектуре OMG можно прочесть в [13].

На основе анализа вышеизложенного, были выбраны в качестве основания следующие базовые службы СУООБД:

* Служба Долговременного Хранения Объектов – управление хранением объектов
* Служба Управления Конкурентным Доступом и Служба Транзакция – объединены вместе протоколом согласованного управления.
* Служба Изменения Объектов – управление журнализацией изменений
*

3.2 Менеджер памяти

Менеджер памяти является ключевым модулем системы.
Его наличие позволяет
* Абстрагироваться от особенностей обращения к различным видам памяти.
* Создавать сколь угодно вложенные друг в друга структуры данных.
* Иметь единый интерфейс на каждом уровне вложенности.
* Организовать кэширование объектов

В состав менеджера памяти входит 3 системы управления:
1. Система управления виртуальной памятью
2. Система управления каналами
3. Система управления кэшированием объектов
4.
3.3 Виртуальная память и каналы

Виртуальная память представляет собой непрерывную для пользователя, с ней работающего, область памяти, которая может быть вложена в другую виртуальную память. Виртуальная память состоит из сегментов, связанных между собой в двунаправленную цепь. Каждому сегменту известно его положение относительно нижнего логического уровня. Работа с виртуальной памятью происходит через канал, выделенный для нее. Канал – это набор характеристик описывающих: где расположена виртуальная память, и в каком ее месте мы находимся. Количество каналов ограничено, поэтому канал выделяется той виртуальной памяти, которая нужна в данный момент. Система имеет набор каналов, которые могут иметь ссылку на виртуальную память, либо быть незанятыми. Первые 5 каналов – это базовые каналы, отображенные на физические носители (оперативная память, файл). Вторые 5 каналов – каналы виртуальной памяти, хранящие каталоги объектов. Остальные каналы предназначены для работы с объектами. Все каналы основываются на каких-либо других каналах, образуя, в общем случае, 5 независимых деревьев. Корень – один из базовых каналов (0..4). Одна и та же виртуальная память не может быть загружена в два канала. При переходе от верхнего канала к нижнему выполняется трансляция адреса.


Рис 3: Связь каналов с хранилищами объектов

Таблица 2: Параметры канала
Параметр канала Семантика
NCHAN Номер текущего канала
LOWCH Нижний канал; в него вложен этот канал
CHGCTX Признак изменения данных заголовка фрагмента
TEKADR Текущая позиция для чтения/записи
SYNCADDR Адрес начала заголовка текущего сегмента в нижнем канале
TEKADR0 Позиция, соответствующая началу данных фрагмента
PREDADDR Адрес заголовка предыдущего фрагмента (–1, если его нет)
NEXTADDR Адрес заголовка следующего фрагмента (–1, если его нет)
BUSYLEN Занятая длина
LEN Выделенная длина

Таблица 3: Операции доступа к данным виртуальной памяти
Операция Семантика (все операции работают с текущим каналом)
IBS Чтение байта из канала
OBS Запись байта в канал
GOTO Переход по адресу в канале
@GOTO Переход по смещению в канале
UPSIZE Выделить доп. память в конце канала и встать на ее начало
DEFRAG Сделать виртуальную память непрерывной на уровне нижнего канала (т.е. однофрагментной)

Начало виртуальной памяти соответствует нулевому значению TEKADR. Доступ осуществляется через операции позиционирования (GOTO и @GOTO), чтения байта (IBS) и записи байта (OBS). Остальные функции, реализуются через них (например, чтение длинного слова). К памяти может быть применена функция UPSIZE с аргументом, содержащим необходимое количество байт для выделения. Память может гарантированно выделяться до заполнения всей выделенной длины. При исчерпании выделенной длины, делается запрос к нижестоящему уровню о выделении дополнительной памяти. Если такой запрос применяется к каналу ниже 5-го, соответствующего дисковому файлу, файл увеличивается в размере, если его выделенная длина исчерпана. Если увеличение размера файла невозможно из-за нехватки дискового пространства, то, в случае невозможности выделения памяти за счет упаковки, возбуждается ситуация NOMEMORY. При попытке доступа за пределы определенной виртуальной памяти (например, чтение после расположения данных), возникает ситуация OUTDATA.

3.4 Система управления кэшированием объектов

Самостоятельное кэширование данных – неотъемлемая черта любой СУБД. Кэш состоит из двух частей: очереди кэшируемых объектов и памяти для кэшируемых объектов. Память для кэшируемых объектов – это оперативная память, в которую объект загружается. В этой памяти могут располагаться только те объекты, идентификаторы которых находятся в очереди кэшируемых объектов. Удаляемый из очереди объект выгружается в дисковую память. В данной дипломной работе все создаваемые объекты являются стабильными (Persistent), т.е. они обязательно сохраняются на диске и могут быть использованы после открытия базы данных для использования.
Задача управления кэшированием объектов подобна задаче управления памятью в операционной системе. В операционной системе для организации процесса обмена между оперативной и внешней памятью информация представлена набором сегментов (блоки переменной длины) или страниц (блоки фиксированной длины). Способ управления памятью называется алгоритмом замещения, который определяет состав сегментов или страниц в более быстродействующей основной памяти. Таким образом, частота обращений к внешней памяти, а, следовательно, и быстродействие двухуровневой памяти (уровень внешней памяти и уровень оперативной памяти) в целом, существенно зависят от выбранного алгоритма замещения. Наибольшее распространение получила страничная структура памяти.
В дипломной работе роль страницы играет объект. Минимальную частоту обращений к ВП (внешней памяти) давал бы алгоритм, замещающий те объекты в ОП (оперативной памяти), обращение к которым в будущем произойдет через максимально долгое время. Однако реализовать такой алгоритм невозможно, поскольку заранее неизвестна информация о будущих обращениях к объектам программой.
Наиболее популярны следующие пять алгоритмов замещения:
1. Случайное замещение (СЗ): с равной вероятностью может быть замещен любой объект,
2. Раньше пришел – раньше ушел (РПРУ, или FIFO): замещается объект дольше всех находившийся в оперативной памяти,
3. Замещение наиболее давно использовавшегося объекта (НДИ),
4. Алгоритм рабочего комплекта (РК): хранятся в памяти только те объекты, к которым было обращение в течении времени ?, назад от текущего момента,
5. Лестничный алгоритм (ЛЕСТН): в списке объектов при обращении к объекту он меняется местами с объектом, находящемся ближе к голове списка. При обращении к отсутствующему в ОП объекту объект, находящийся в последней позиции вытесняется.

Для алгоритма замещения желательно, чтобы он обладал двумя отчасти противоречивыми свойствами: с одной стороны, он должен сохранять в ОП объекты к которым обращения происходят наиболее часто, с другой – быстро обновлять содержимое ОП при смене множества рабочих объектов.
Например, алгоритм РПРУ эффективен только в отношении быстрого обновления ОП, он не выделяет в списке объектов объекты, обращения к которым происходят чаще, чем к остальным. Алгоритм НДИ также позволяет быстро обновлять содержимое ОП. Однако последовательность одиночных обращений достаточной длины к объектам, находящимся во ВП, вытеснит из ОП все объекты, к которым, в среднем, обращения происходят чаще всего.
В [1] описывается класс многоуровневых алгоритмов замещения ?, которые позволяют решить эту проблему. Они зависят от конечного числа параметров и при адаптивном подборе этих параметров соединяют свойство быстрого обновления части ОП со свойством сохранения в ОП тех объектов, которые наиболее часто запрашиваются.
В дипломной работе решено использовать алгоритм замещения из класса ?, при следующих параметрах: лимит времени нахождения объекта в ОП отсутствует, размеры подсписков на всех уровнях одинаковы, параметр l=1 (это соответствует алгоритму замещения НДИ для объектов всех подсписков; если i – положение объекта в подсписке, и i ? l, то при обращении к нему применяется алгоритм РПРУ, иначе НДИ).
Неэффективным является подход простого освобождения от объектов, которые стоят в конце списка кэша, поскольку они могут быть малы по размеру, а требуется загрузить объект, который занимает значительное количество памяти. В этом случае, пришлось бы ради одного объекта выгружать значительное количество других. Что привело бы к значительным потерям времени при их повторной загрузке.
Для определения подмножества объектов кэша, подлежащих вытеснению, можно применить алгоритм решения задачи о рюкзаке. Если бы все объекты имели одинаковую длину, без этого можно было бы обойтись. Хотя алгоритм решения задачи о рюкзаке NP-сложен, решение можно компактно записать в виде рекурсивного алгоритма, находящего решение за счет применения принципа динамического программирования Беллмана. Такой способ наиболее эффективен, когда размер кэша составляет 32 объекта, поскольку множество выбранных объектов можно представить битовыми полями в длинном слове. При большем размере кэша возрастают потери памяти и быстродействия, и возникает вопрос о месте расположения данных промежуточных вызовов. Рекурсивный вызов в среде ДССП требует малых затрат ресурсов, а время расчета окупается за счет времени обмена с внешней памятью, работа с которой много медленнее, чем с оперативной.
3.5 Система управления журнализацией и восстановлением

Журнализация предназначена во-первых, для обеспечения возможности отката некорректных действий транзакций, и, во-вторых, для восстановления базы данных после аппаратного сбоя. В ООБД журнализацию можно проводить на трех уровнях: инфологическом, даталогическом и физическом. На инфологическом уровне журнал фиксирует сообщения, циркулирующие в системе. На даталогическом уровне фиксируется какие примитивы были вызваны на выполнение сообщениями. На физическом уровне фиксируются низкоуровневые операции: по какому адресу в какой виртуальной памяти производилась запись, как изменились границы виртуальной памяти.
Обычные БД хранят мгновенный снимок модели предметной области. Любое изменение в момент времени t некоторого объекта приводит к недоступности состояния этого объекта в предыдущий момент времени. Интересно, что при этом в большинстве развитых СУБД предыдущее состояние объекта сохраняется в журнале изменений, но возможность доступа к этим данным для пользователей закрыта.
Для журнализации избран подход, примененный в СУБД Postgres, разработанной в университете г.Беркли, Калифорния под руководством М.Стоунбрейкера, как наиболее простой в реализации и предоставляющий полезные возможности, недоступные в базах данных с обычным типом журнализации (см. [23]). В этой системе, во-первых, не ведется обычная журнализация изменений базы данных, и мгновенно обеспечивается корректное состояние базы данных после перевызова системы с утратой состояния оперативной памяти. Во-вторых, система управления памятью поддерживает исторические данные. Запросы могут содержать временные характеристики интересующих объектов. Реализационно эти два аспекта связаны.
СУБД, имеющие такой вид журнализации, называются темпоральными СУБД. Основной тезис темпоральных систем состоит в том, что для любого объекта данных, созданного в момент времени t1 и уничтоженного в момент времени t2, в БД сохраняются (и доступны пользователям) все его состояния во временном интервале [t1, t2). Система не только хранит информацию о прошлых состояниях объекта, но и предоставляет пользователю доступ к ней через язык запросов.
Т.е. журнал состоит из меток времен и значений объектов. СУБД POSTGRES является экспериментальной и, в частности, предполагается, что она функционирует на вычислительной аппаратуре, оснащенной статической оперативной памятью, не теряющей информации при отключении внешнего питания. Впрочем, затраты на статическую память компенсируются быстродействием СУБД и дополнительными возможностями, приобретаемыми при таком подходе, а именно: возможность получить значение объекта в произвольный момент времени.

Вообще говоря, каждый объект в системе состоит из трех частей: Заголовка объекта, данных и истории. В заголовке объекта имеется поле VALUE, которое содержит ссылку на начало расположения внутри объекта данных о его состоянии. Объект, с которым пользователь хочет работать, автоматически загружается системой в кэш, где ему выделяются 4 канала:

1. Канал объекта в кэше
2. Канал объекта на диске
3. Канал данных объекта в кэше
4. Канал истории изменений объекта на диске

Прикладной программист не работает напрямую с каналами. С каналами работают примитивы доступа к содержимому объекта. Прикладной программист работает с объектами только через их идентификаторы. А идентификаторам объектов ставятся в соответствие каналы в системе кэширования объектов.

3.6 Принципы реализации механизма согласованного управления

Область действия операции

Каждый объект обладает поведением, реализуемым через методы (операции). Если операция работает только с внутренними данными объекта, то она является локальной, если же она посылает сообщения другим объектам, то – глобальной. Посланное к другому объекту сообщение порождает на нем выполнение соответствующей операции. Через транзитивное замыкание можно представить процесс порождения отношением предок – потомок.
Областью действия операции на объекте являются:
Данные состояния объекта, входные параметры операции, системные объекты, а также все объекты, обладающие определенным поведением, если это поведение является объектом, над которым выполняется операция.

Воздействие операции

Все воздействия любой операции на объекте, попадают под одну из четырех категорий: запрос, создание, модификация, удаление. Для каждой операции на объекте определяются соответствующие множества.
Множество запросов QS(opi(O)) определяется рекурсивно как QS(opi(O)) = LocalQS(opi(O)) ? GlobalQS(opi(O)), где
* LocalQS = ?, если нет собственных ivj из O "запрошенных" операцией opi. {O}, иначе.
* GlobalQS =
{Ogq | opi, посылает сообщение к Os для выполнения метода opj, где Os? Scope(opi(O)), и Ogq?QS(opj(Os))}.
Аналогично определяются можества создания модификации и удаления операции opi на объекте O.
Множество замен определяется как объединение множеств создания, модификации и удаления. Конфликт операций – выполнение одного из следующих условий:

1. US(opi(O)) ? US(opj(O")) ? ?
2. QS(opi(O)) ? US(opj(O")) ? ?
3. US(opi(O)) ? QS(opj(O")) ? ?

Пользовательские транзакции можно рассматривать как операции над специальным объектом базы данных.
Пользовательские операции могут быть разбиты на ряд шагов, каждый из которых выполняет некоторую логическую единицу работы. Шаги эти также можно считать едиными операциями. Такое разбиение позволяет ввести понятие точки разрыва. Точка разрыва ставится между двумя шагами на одном уровне любой операции.

Объектно-ориентированное расписание

Для увеличения производительности СУБД, некоторые операции могут взаимодействовать друг с другом в базе данных. Некоторые из этих операций могут выполняться на одном объекте. Совместное выполнение многих операций (псевдопараллельность) может приводить к произвольному чередованию операций (или их шагов). Порядок чередования называется объектно-ориентированным расписанием. Так как "пользовательские транзакции" являются только операциями на специальном объекте, ОО-расписание можно определить на этом объекте как пару (S,= 1- > ;
[20 WORD VCTR CHAN] [каналы. Начиная с 5-го]
VAR NCHAN [Номер текущего канала]
: !NCHAN ! NCHAN ;

5 VALUE NBASECH [Первый не базовый канал]

: GETDATA NCHAN 10 * + CHDATA ;
: PUTDATA NCHAN 10 * + ! CHDATA ;

[Размер заголовка блока в байтах]
FIX VAR HSIZE 10 ! HSIZE
: HSIZE+ HSIZE + ;

[Pred, Next, BusyLen, Len]
1 *4 VALUE ctfPREDADDR

[$M4] [как самодостаточный]
0 VALUE ctLOWCH [Нижний канал.]
[0=Оперативная/1=Дисковая память/2=Журнал/-1=свободен]
1 VALUE ctTEKADR [Логический адрес внутри участка (по данным)]
2 VALUE ctBUSYLEN [Длина фрагмента, занятая данными]
3 VALUE ctLEN [Максимальная допустимая длина данных фрагмента]
4 VALUE ctTEKADR0 [=TEKADR, когда TEKADR стоит на нулевом байте данных фрагм]

5 VALUE ctNEXTADDR [Адрес начала заголовка следующего фрагмента (пф)]
6 VALUE ctPREDADDR [Адрес начала заголовка предыдущего фрагмента (пф)]
7 VALUE ctSYNCADDR [Адрес начала заголовка фрагмента (пф)]
8 VALUE ctCHGCTX [признак изменения контекста]
9 VALUE ct1STLONG [Первое число в канале]
[в начальном блоке в начальном слове данных лежит адрес начала данных]

: LOWCH ctLOWCH GETDATA ; : !LOWCH ctLOWCH PUTDATA ;
: TEKADR ctTEKADR GETDATA ; : !TEKADR ctTEKADR PUTDATA ;
: TEKADR0 ctTEKADR0 GETDATA ; : !TEKADR0 ctTEKADR0 PUTDATA ;
: TEKADR++ TEKADR 1+ !TEKADR ; : !+TEKADR TEKADR + !TEKADR ;
: BUSYLEN ctBUSYLEN GETDATA ; : !BUSYLEN ctBUSYLEN PUTDATA ;
: LEN ctLEN GETDATA ; : !LEN ctLEN PUTDATA ;
: NEXTADDR ctNEXTADDR GETDATA ; : !NEXTADDR ctNEXTADDR PUTDATA ;
: PREDADDR ctPREDADDR GETDATA ; : !PREDADDR ctPREDADDR PUTDATA ;
: SYNCADDR ctSYNCADDR GETDATA ; : !SYNCADDR ctSYNCADDR PUTDATA ;
: CHGCTX ctCHGCTX GETDATA ; : !CHGCTX ctCHGCTX PUTDATA ;
: FSTLONG ct1STLONG GETDATA ; : !FSTLONG ct1STLONG PUTDATA ;

TRAP NOMEMORY NOMEMORY#
: NOMEMORY#."
No free memory" ;

TRAP OUTDATA OUTDATA#
: OUTDATA#."
Out of data. " ;

TRAP OUTMEM OUTMEM#
: OUTMEM#."
Out of memory. " ;

TRAP UNKCH UNKCH#
: UNKCH#."
Unknown primitive channel:" NCHAN.D CR ;

TRAP O_NOTFND NOTFND#

: NOTFND#."
Object not found. OID=". CR ;

[*** Информация по каналу ***]
: IC CR
." NCHAN=" NCHAN.D SP." LOWCH=" LOWCH.D CR
."SYNCADDR=" SYNCADDR.D SP."PREDADDR=" PREDADDR.D SP."NEXTADDR="
NEXTADDR.D CR
." BUSYLEN=" BUSYLEN.D SP." LEN=" LEN.D CR
." TEKADR0=" TEKADR0.D SP." TEKADR=" TEKADR.D CR ;

CHANNEL DATACH "DATA." CONNECT DATACH

7.3 Менеджер виртуальной памяти

PROGRAM $M2
B16 [физическая организация памяти]

[вычисление физического адреса и номера базового канала]
:: : POSIX [addr(i)] NCHAN C NBASECH < BR+ LEAVE [addr nchan] D>
GOTO DELTA2 S( NCHAN ) TOLOW POSIX [addr(i-1)] ;

:: : TOLOW LOWCH !NCHAN ;

[Пересчет адреса в адрес нижнего уровня: TEKADR(i) -> TEKADR(i-1)]
:: : DELTA2 SYNCADDR HSIZE + TEKADR TEKADR0 - + ;

:: : IBS EON OUTDATA OUTDATA# LAST?
TEKADR POSIX TEKADR++ S( NCHAN ) !NCHAN BSGOTO
NCHAN BR 0 IBS0 1 IBS1 [2 IBS2] ELSE UNKCH ;
:: : OBS EON OUTDATA OUTDATA# LAST?
TEKADR POSIX TEKADR++ S( NCHAN ) !NCHAN BSGOTO
NCHAN BR 0 OBS0 1 OBS1 [2 OBS2] ELSE UNKCH ;
: LAST? TEKADR BUSYLEN TEKADR0 + = IF0 LEAVE NEXTBLK ;

[переход для базового канала ]
: BSGOTO [ADDR] NCHAN BR 0 BSGOTO0 1 BSGOTO1 [2 BSGOTO2] ELSE UNKCH ;
: BSGOTO0 !TEKADR ;
: BSGOTO1 C !TEKADR HSIZE+ SPOS DATACH ;
[ : BSGOTO2 C !TEKADR HSIZE+ SPOS JOURCH ;]

0 %IF
: ADDR [PARAGRAF OFFSET] + [address] ; [Сейчас пгф=1 байту]
[Для файлов можно сделать неск. файлов и распределить по ним пространство]
%FI

: IBS0 TEKADR HSIZE+ MEMORY &0FF TEKADR++ ;
: IBS1 IB DATACH &0FF TEKADR++ ;
[: IBS2 IB JOURCH &0FF TEKADR++ ;]

: OBS0 &0FF TEKADR HSIZE+ ! MEMORY TEKADR++ ;
: OBS1 &0FF OB DATACH TEKADR++ ; [Запись байта]
[: OBS2 &0FF OB JOURCH TEKADR++ ;] [Запись байта]

:: : GOTO NCHAN NBASECH < BR+ BSGOTO VGOTO ;>
: VGOTO TEKADR - @GOTO ;

[Переход по смещению]
:: : @GOTO C BRS @GOTO- D @GOTO+ ;
: @GOTO+ DO @GOTO1+ ;
: @GOTO- NEG DO @GOTO1- ;
: @GOTO1+
EON OUTDATA OUTDATA#
TEKADR TEKADR0 BUSYLEN + =
IF+ NEXTBLK TEKADR 1+ !TEKADR ;
: @GOTO1-
EON OUTDATA OUTDATA#
TEKADR TEKADR0 =
IF+ PREDBLK TEKADR 1- !TEKADR ;

: NEXTBLK CHGCTX IF+ SCTX NEXTADDR NOEXIST? !SYNCADDR RELCTX
TEKADR !TEKADR0 ;
: NOEXIST? [ADDR] C -1 = IF+ OUTDATA [ADDR] ;

[Pred, Next, BusyLen, Len]
:: : LCTX" [UPCH] PUSH TEKADR ILS ILS ILS ILS POP
NCHAN E2 !NCHAN !LOWCH !LEN !BUSYLEN !NEXTADDR !PREDADDR !SYNCADDR
0 !CHGCTX ;
[Грузить параметры канала]
:: : LCTX [newch] LCTX" 0 !TEKADR 0 !TEKADR0 ;
: RELCTX TEKADR0 TEKADR NCHAN SYNCADDR TOLOW GOTO LCTX !TEKADR !TEKADR0 ;
: PREDBLK CHGCTX IF+ SCTX PREDADDR NOEXIST? !SYNCADDR RELCTX
TEKADR BUSYLEN - !TEKADR0 ;

: IBSC [CHAN] S( NCHAN ) !NCHAN IBS ;
: ILSC S( NCHAN ) !NCHAN ILS ;
: OBSC [N CHAN] S( NCHAN ) !NCHAN OBS ;
: IOBSCC [SRC DST] C2 IBSC C2 OBSC ;

: DO_IOBSCC [SRC_CH DST_CH N] S( NCHAN )
C3 !NCHAN 0 GOTO DO IOBSCC [SRC DST] ;

: IWS IBS IBS SWB &0 ;
: ILS IWS IWS SETHI ; [SWW &0]
: OWS C OBS SWB OBS ;
: OLS C OWS SWW OWS ;

[Перейти к конечному блоку]
: GOTOENDBK NEXTADDR -1 = EX+ BUSYLEN TEKADR0 +
NEXTADDR !SYNCADDR RELCTX C !TEKADR0 !TEKADR ;
: GOBOTTOM RP GOTOENDBK BUSYLEN TEKADR0 + GOTO ;
: LENVMEM GOBOTTOM TEKADR [LEN] ; [длина виртуальной памяти]
: LASTADDR SYNCADDR LEN + HSIZE+ ;
: OBS-0 NCHAN BR 0 OBS00 1 OBS01 [2 OBS02] ELSE OBS0N ;
: OBS00 0 OBS0 ; : OBS01 0 OBS1 ; [: OBS02 0 OBS2 ;] : OBS0N 0 OBS ;

[Спецификация: Размер увеличивается на N байт. Если это невозможно,
возникает исключительная ситуация NOMEMORY.
После работы мы стоим в том же канале в начале выделенного пространства. ]
: UPSIZE [N] GOBOTTOM TEKADR E2 UPSIZE" GOTO [] ;
: UPSIZE" [N] GOBOTTOM LEN BUSYLEN - CALCOST [HARD SOFT] UPSIZEI
C BR0 D UPSIZEO ;
: CALCOST [N FREE] C2C2
: COST1 [N FREE] T0 E2 [0 N] ;
: COST2 [N FREE] C PUSH - POP [N-FREE FREE] ;

: UPSIZEI [N_SOFT] BUSYLEN + !BUSYLEN 1 !CHGCTX SCTX ;
: UPSIZEO [N_HARD] NCHAN BR 0 USO0 1 USO1 2 USO1 ELSE USON ;
: USO1 C GOBOTTOM TEKADR E2 DO OBS-0 [!TEKADR] BSGOTO
C BUSYLEN + !BUSYLEN LEN + !LEN 1 !CHGCTX SCTX ;
: USO0 NOMEMORY [Сюда можно вставить упаковку] ;

[Спецификация: увеличение размера (жестко, т.е. за счет нижнего уровня)]

: USON [N] SYNCADDR LASTADDR USON1 RELCTX [>] UPSIZE" ;
: USON1 S( NCHAN ) TOLOW BUSYLEN = BR+ USON_ADD USON_NEW ;
[Расширение увеличением длины фрагмента]
: USON_ADD C2 [N SYNCADDR N] UPSIZE" C BUSYLEN E2 - HSIZE - E2
[N LEN SYNCADDR] 3 *4 + GOTO OLS [N] [UPSIZEI] ;
[Расширение созданием нового фрагмента]
: USON_NEW C2 [N SYNCADDR N] [GOBOTTOM] C HSIZE+ UPSIZE"
[N SYNCADDR N] C2 -1 0 C4 TEKADR PUSH WRITECTX D 4+ GOTO POP OLS [N] ;
: WRITECTX [PRED NEXT BUSY LEN] C4 OLS C3 OLS C2 OLS C OLS DD DD ;

FIX VAR UPCONST 10 ! UPCONST [Этому числу байт кратно увеличение]
[Увеличение размера нижнего уровня]
[увеличение физического размера этого уровня]

: SCTX CHGCTX IF0 LEAVE 0 !CHGCTX NCHAN BR 0 NOP 1 SCTX1 [2 SCTX2]
3 NOP 4 NOP ELSE SCTXN ;
: SCTXN TEKADR NCHAN LEN BUSYLEN NEXTADDR
PREDADDR SYNCADDR TOLOW GOTO 4 DO OLS !NCHAN GOTO ;
: SAVEALL NOP ; [СОХРАНИТЬ ВЕСЬ КАНАЛ НА ПЕРВИЧНОМ УСТРОЙСТВЕ (ИСТОЧНИКЕ)]
: SCTX1 POS DATACH 8 SPOS DATACH BUSYLEN OL DATACH LEN OL DATACH SPOS DATACH ;
[
: SCTX2 POS JOURCH 8 SPOS JOURCH BUSYLEN OL JOURCH LEN OL JOURCH SPOS JOURCH ;
]
[Новая виртуальная память]
0 %IF
: NEWVM [N] TEKADR C2 HSIZE+ UPSIZE GOTO -1 -1 C3 C WRITECTX D ;
%FI

: NEWVM [N] C HSIZE+ UPSIZE TEKADR PUSH -1 -1 0 C4 WRITECTX DO OBS-0
POP [SYNCADR] ;
: END? NEXTADDR -1 = TEKADR BUSYLEN TEKADR0 + = & ;

: NEWVM1 [N] C HSIZE+ UPSIZE TEKADR PUSH -1 -1 E3 C WRITECTX WRI_DATA
POP [SYNCADR] ;

: LOADCH0 0 !NCHAN 0 !LOWCH 0 !TEKADR 0 !BUSYLEN
TOTMEMLEN !LEN 0 !TEKADR0 0 !SYNCADDR -1 !NEXTADDR -1 !PREDADDR ;
[ДЛЯ БАЗОВЫХ КАНАЛОВ LOWCH=NCHAN]

7.4 Система управления хранением объектов

PROGRAM $SOMS
B16
[СИСТЕМА УПРАВЛЕНИЯ ХРАНЕНИЕМ ОБЪЕКТОВ]

FIX LONG VAR MAXID
1 ! MAXID
: NEWID MAXID !1+ MAXID ;
: DEFMAXID 6 EL_MAX 1+ ! MAXID ;

[5 КАНАЛ = ОПЕРАТИВНАЯ ПАМЯТЬ; 6 КАНАЛ = ДИСКОВАЯ ПАМЯТЬ]
: L_SUHO 0 !NCHAN 0 GOTO 5 LCTX 1 !NCHAN 0 GOTO 6 LCTX ;
[создание структуры СУХО для ОП]
[9 -- Размер, занимаемый элементом списка]

LONG VAR SIZE_EL 8 ! SIZE_EL

[создать новый объект]

ACT VAR WRI_DATA
: M.NEWOBJ [SIZE OID] 0 E2 8 5 X.NEWOBJ [] ;
: D.NEWOBJ [SIZE OID] 1 E2 8 6 X.NEWOBJ [] ;

: X.NEWOBJ [SIZE LOWCH OID SIZE_EL DIR_CHAN] C PUSH S( NCHAN ) !NCHAN UPSIZE
[.. OID] OLS [basechan] !NCHAN NEWVM1 [SYNCADDR] POP !NCHAN OLS [] ;

:: : M.VIEW 5 !NCHAN CR."RAM:" VIEW.OBJ" ;
:: : D.VIEW 6 !NCHAN CR."HDD:" VIEW.OBJ" ;
:: : A.VIEW M.VIEW D.VIEW ;
: IC.VIEW [A L] SHR SHR E2 GOTO DO IC1.V ;
: IC1.V TEKADR CR.D #> TOB SP SP ILS.D ;

: VIEW.OBJ" 0 GOTO ILS D [Пропустили длину элемента]
CR." OID ADDRESS" RP SHOWPAROBJ ;
: SHOWPAROBJ END? EX+ ILS C BR0 SPO1 SPO2 ;
: SPO1 D ILS D ;
: SPO2 CR.D SP ILS.D SP ;

: M.DEL [OID] 5 X.DEL ; : D.DEL [OID] 6 X.DEL ;
: A.DEL [OID] C M.DEL D.DEL ;

ACT VAR EL_AVAR
:: : X.DEL [OID NCHAN] EL_FIND [OID 1/0] IF+ EL_DEL D ;
[найти элемент в списке по ID и встать на след. за OID слово]
: EL_DEL -4 @GOTO 0 OLS ;
:: : EL_FIND [OID NCHAN] "" EL_COMPAR ! EL_AVAR EL_PEREBOR ;
: EL_PEREBOR !NCHAN 0 GOTO ILS D RP EL_FIND0 [OID 1/0] ;
: EL_FIND0 END? 0 E2 EX+ D ILS C BR0 D EL_AVAR ILS D ;
: EL_COMPAR [OUR_OID TEK_OID] C2 = C EX+ D ;
:: : EL_MAX [DIR-NCHAN] 0 E2 "" MAX ! EL_AVAR EL_PEREBOR D [OID] ;

:: : DB.NEW !1 MAXID WOPEN DATACH
-1 OL DATACH -1 OL DATACH 14 OL DATACH 14 OL DATACH
-1 OL DATACH -1 OL DATACH 4 OL DATACH 4 OL DATACH
8 OL DATACH CLOSE DATACH
[ WOPEN JOURCH
-1 OL JOURCH -1 OL JOURCH 14 OL JOURCH 14 OL JOURCH
-1 OL JOURCH -1 OL JOURCH 4 OL JOURCH 4 OL JOURCH
8 OL JOURCH CLOSE JOURCH ]
DB.OPEN ;

: DB.CLOSE CLOSE DATACH [CLOSE JOURCH] ;
: DB.OPEN -1 !!! CHDATA
[DATA]
OPEN DATACH 1 !NCHAN 0 !TEKADR 0 !TEKADR0 1 !LOWCH
IL DATACH !PREDADDR IL DATACH !NEXTADDR 0 !SYNCADDR
IL DATACH !BUSYLEN IL DATACH !LEN 6 LCTX
[RAM]
0 !NCHAN 0 !LOWCH 0 !TEKADR 0 !BUSYLEN
TOTMEMLEN !LEN 0 !TEKADR0 0 !SYNCADDR -1 !NEXTADDR -1 !PREDADDR
"" WRI_8OLS ! WRI_DATA [длина элемента каталога]
4 [
[SYNCADR] GOTO 5 LCTX [4 UPSIZE 8 OLS] DEFMAXID
CHMS.INIT ;

: WRI_8OLS 8 OLS ;

7.5 Система управления каналами

PROGRAM $CHMS
3 VALUE LENGRP [Вместимость уровня приоритетов]
4 VALUE QChannels
LENGRP 3 * 1+ VALUE LenPrioQue [длина очереди приоритетов. Очередь -- с 0]
: N2CH [N] QChannels * 0A + [NCHAN] ;

LenPrioQue 1+ N2CH 10 * LONG VCTR CHDATA [память параметров каналов]
[для каждого канала можно завести 16. различных параметров]

: CHMS.INIT 0 !!! PrioQueOID
0 LenPrioQue DO SETNQ D ;
: SETNQ C C ! PrioQueNUM C N2CH [NUM CHAN1]
[вычислили номер канала для очередного объекта кэша]
C C3 1 ! Channels
1+ C C3 2 ! Channels
1+ C C3 3 ! Channels
1+ C C3 4 ! Channels D 1+ ;

[при обращении к объекту нужно повысить его приоритет]
: HIPRIODD D HIPRIO ;
: HIPRIO [OID] FINDOID C BR- D HIPRIO1 ;
: HIPRIO1 [N] C LENGRP / D C IF+ 1- LENGRP * [N N"] E2 UPOID [] ;
[Новый объект добавляется на последн. поз-ю, а затем к нему примен. HIPRIO]

LenPrioQue LONG VCTR PrioQueOID [список OID]
LenPrioQue WORD VCTR PrioQueNUM [номера записей в массиве каналов]
LenPrioQue QChannels 2 WORD ARR Channels

[обменять в очереди с соседним вышестоящим]
: SWP2OBJ [N] C IF0 LEAVE C PrioQueOID C2 1- PrioQueOID
C3 ! PrioQueOID C2 1- ! PrioQueOID
C PrioQueNUM C2 1- PrioQueNUM C3 ! PrioQueNUM C2 1- ! PrioQueNUM 1- [N-1] ;
: SWP2OBJDD SWP2OBJ DD ;

: FINDOID [OID] 0 LenPrioQue DO CMPOID E2D C LenPrioQue = IF+ T-1 [-1/N] ;

: CMPOID [OID] C PrioQueOID [OID N OID(N)] C3 = EX+ 1+ ;
[Поднять объект от N_DOWN к N_UP в очереди]
: UPOID [N_UP N_DOWN ] C E3 - DO SWP2OBJ D [] ;

[Просмотр очереди (кэш объектов)]
: Q.VIEW 0 LenPrioQue
." M.Hdr D.Hdr M.Dat D.His"
DO QELVIEW D ;
: QELVIEW [n] CR C C 2 TON LENGRP / E2D BR0 #- #) TOB
C PrioQueOID." OID=".D C PrioQueNUM." Num=".
." Channels= " 1 QChannels DO PriNCH
DD 1+ ;

: PriNCH [NOID NCH] C2C2 Channels 4 TON SP SP 1+ [NOID NCH+1] ;

7.6 Работа с базовыми объектами

PROGRAM $SYSOBJS
B16

LONG VAR ADRSTR LONG VAR LENSTR

0 VALUE N_OID 4 VALUE N_BHR 8 VALUE N_KH
0C VALUE N_TRC 10 VALUE N_VAL 14 VALUE N_HIS
13 VALUE JRECLEN

: G_OID N_OID GOTO ; : W_OID G_OID OLS ;
: G_BHR N_BHR GOTO ; : W_BHR G_BHR OLS ;
: G_KH N_KH GOTO ; : W_KH G_KH OLS ;
: G_TRC N_TRC GOTO ; : W_TRC G_TRC OLS ;
: G_VAL N_VAL GOTO ; : W_VAL G_VAL OLS ;
: G_HIS N_HIS GOTO ; : W_HIS G_HIS OLS ;

18 VALUE SZ_HDROBJ
: W_NULLBLK -1 OLS -1 OLS 0 OLS 0 OLS ;

[Описание системных объектов]
ACT VAR DATWR

LONG VAR OIDV
LONG VAR VALINT
[**** ROOT ****]
SZ_HDROBJ HSIZE+ HSIZE+ 4+ VALUE SIZE_ROOT

:: : CLONE_ROOT "" DATWRROOT ! DATWR NEWOBJ1 ;
:: : CLONE_INT ! VALINT "" DATWRINT ! DATWR NEWOBJ1 ;
:: : CLONE_SET 4 CLONE_INT ;
:: : CLONE_SEQ 4 CLONE_INT ;
:: : CLONE_AGG 0C CLONE_INT ;
:: : CLONE_STR [A L] ! LENSTR ! ADRSTR "" DATWRSTR ! DATWR
LENSTR SIZE_ROOT + 4- ! SIZE_X NEWOBJ3 ;

:: : SET_BHR [OID_BHR OID] N_BHR E2 SET_X1 ;
:: : SET_KH [OID_KH OID] N_KH E2 SET_X1 ;
: SET_X1 [ADR OID] C2C2 N_TRSC E2 NEWJREC
C LOADOBJ FINDOID C BR- DD SET_X11 ;
: SET_X11 PrioQueNUM 2 Channels !NCHAN GOTO OLS ;
:: : SET_INT [int oid] C HIPRIO PUSH ! VALINT 4 "" OLSI POP NEWDREC ;
: OLSI VALINT OLS ;
:: : GET_INT [OID] TODATA ILS ;
:: : TODATA [OID] C LOADOBJ C HIPRIO FINDOID PrioQueNUM
3 Channels !NCHAN 0 GOTO ;

:: : SET_STR [A L OID] C HIPRIO
PUSH ! LENSTR ! ADRSTR LENSTR "" OLSS POP NEWDREC ;
: OLSS ADRSTR LENSTR DO DWS1 D ;

ACT VAR BYTE_STR
:: : PRINT_STR "" PRIS ! BYTE_STR ACCESS_STR ;
:: : COPY2BUF_STR "" C2BUF ! BYTE_STR ACCESS_STR ;
:: : ACCESS_STR [OID] TODATA LENVMEM 0 GOTO DO BYTE_STR ;
: PRIS IBS TOB ;
: C2BUF IBS ABUF !TB !1+ ABUF ;

: DD_ROOT
OIDV OLS 0 OLS 0 OLS 0 OLS SZ_HDROBJ HSIZE+ OLS [val]
SZ_HDROBJ OLS [his]
W_NULLBLK [W_NULLBLK] DATWR ;

LONG VAR SIZE_X

: DATWRROOT -1 OLS -1 OLS 0 OLS 4 OLS 0 OLS ;
: DATWRINT -1 OLS -1 OLS 4 OLS 4 OLS VALINT OLS ;
: DATWRSTR -1 OLS -1 OLS LENSTR OLS LENSTR OLS ADRSTR LENSTR DO DWS1 D ;
: DWS1 [A] C @B OBS 1+ ;

: NEWOBJ1 [] SIZE_ROOT ! SIZE_X NEWOBJ3 ;
: NEWOBJ3 "" DD_ROOT ! WRI_DATA
NEWID C ! OIDV SIZE_X C2 D.NEWOBJ [OID] ;

9 VALUE LCH
LCH LONG VCTR CLONEHDR VAR DATCH LONG VAR LENVMEM1

:: : CLONE [OID] C HIPRIO
C LOADOBJ FINDOID PrioQueNUM C PUSH 2 Channels !NCHAN 0 GOTO
CLONE1 []
"" CC_ROOT ! WRI_DATA NEWID C 0 ! CLONEHDR SZ_HDROBJ HSIZE+ C2 D.NEWOBJ
[OID] POP 3 Channels C ! DATCH !NCHAN LENVMEM C ! LENVMEM1
C2 [OID_NEW LEN OID_NEW] CLONE_DATA [OID_NEW] ;

: CLONE1
ILS 1 ! CLONEHDR [BHR] ILS 2 ! CLONEHDR [KH]
ILS 3 ! CLONEHDR [TRC] 0 4 ! CLONEHDR
SZ_HDROBJ 5 ! CLONEHDR -1 6 ! CLONEHDR
-1 7 ! CLONEHDR 0 8 ! CLONEHDR
0 9 ! CLONEHDR ;

: CCR1 [N] C CLONEHDR OLS 1+ ;
: CC_ROOT 0 LCH 1+ DO CCR1 D ;

: CLONE_DATA [LEN OID] "" COPY_DATA E2 NEWDREC [] ;
: COPY_DATA [] DATCH NCHAN LENVMEM1 DO_IOBSCC DD ;

:: 0 VALUE N_TRSC
[Запись новых данных, запись в журнал]
: NEWDREC [SIZED PROC OID] N_VAL N_TRSC C3 NEWJREC FINDOID
PrioQueNUM [SIZE PROC N] C PUSH
2 Channels !NCHAN
[SIZED PROC] ! WRI_DATA NEWVM1 G_VAL C OLS [ADR_DATA]
[перечитать канал данных]
GOTO POP 3 Channels LCTX [] ;

[новая запись в журнал. На вх: номер транз. и адрес из заголовка]

: NEWJREC [addr_hdr TRANS OID] C LOADOBJ FINDOID PrioQueNUM
[. TRANS N] C PUSH 4 Channels
!NCHAN JRECLEN UPSIZE OLS POP NCHAN PUSH 2 Channels !NCHAN
C GOTO ILS POP !NCHAN
E2 OWS OLS W_DATIME [] ;

B10
[Запись текущего времени]
: W_DATIME 1979 OWS 12 OBS 31 OBS TMGET TMS ;
: TMS [num] N2T GBR E2 GBR E2 GBR E2 OBS OBS OBS 100 * OWS ;
B16

[просмотр журнала объекта]
[Переключиться на журнал]
: OBJ.J [OID]
C LOADOBJ FINDOID PrioQueNUM 4 Channels !NCHAN ;
: JVIEW [oid] CR."Updated data:"
OBJ.J LENVMEM JRECLEN / D 0 GOTO DO JVIEW1 ;
: JVIEW1 CR."Trans= " ILS.D SP
IWS BR N_BHR."Behav.=" N_VAL."AddrVal=" N_KH."Knowhow="
ELSE."?????? =" ILS SP.D SP JDATAV1 ;
: JDATAV1 S( BASE@ ) B10 IWS IBS IBS 2 TON #. TOB 2 TON #. TOB 4 TON
SP SP #: POS2 #: POS2 #. POS2 # IWS 4 TON TOB ;
: POS2 [B] IBS 2 TON TOB ;

[Определить размер объекта в памяти = заголовок + данные]
: SIZEMEMOBJ [N] C PrioQueOID BR0 T0 SMEMO1 [0/size] ;
: SMEMO1 3 Channels !NCHAN LENVMEM HSIZE+ HSIZE+ SZ_HDROBJ + [size] ;

7.7 Выполнение действий

PROGRAM $M3
[Выполнение действий (knowhow)]

FIX 1000 BYTE VCTR BUFTXT [Буфер для текста действий]

FIX LONG VAR ABUF
: BEGABUF 0 " BUFTXT ! ABUF ;
: RUNCMD [OID_KH] BEGABUF "KH$" S2BUF N2BUF ABUF BEGABUF ABUF E2 C2 -
TEXEC ;

: MAKECMD [OID_KH] BEGABUF ": KH$" S2BUF C N2BUF # ABUF !TB !1+ ABUF
COPY2BUF_STR " ; " S2BUF
ABUF BEGABUF ABUF E2 C2 - TEXEC ;

: S2BUF [A L] DO S2BUF1 D ;
: S2BUF1 C @B ABUF !TB !1+ ABUF 1+ ;
: N2BUF [N] 8 DO CTN-SB D 8 [C1.. Cn n] DO CTB ;
: CTN-SB [N] C 0F & #0 + E2 -4 SHT [C N"] ;
: CTB ABUF !TB !1+ ABUF ;

LONG VAR OIDK

: NEW_VOC "PROGRAM $KH_VOC" TEXEC ;
: RUN_KH [OID_KH] NEW_VOC C MAKECMD RUNCMD ;

7.8 Кэширование объектов

PROGRAM $LS_CASH
[ Каналы: 1 - Header M.Obj 2 - Header D.Obj 3 - M.Data 4 - D.History ]
[Считаем, что все объекты -- стабильные]

: LOADOBJ [OID] C FINDOID [искали в кэше] C BR- LOADOBJ-1 DD ;
: LOADOBJ-1 D [OID] [Ищем в каталоге БД объект] [C] LOADOBJ1 [LOADOBJ2]
LenPrioQue 1- HIPRIO1 [] ;

: LOADOBJ1 6 LOADOBJ3 ;

[открыть дисковый объект в кэше]
: LOADOBJ3 [OID NDIRCH] EL_FIND [OID 1/0] IF0 O_NOTFND [Нет такого объекта]
C LenPrioQue 1- ! PrioQueOID [Занесли в кэш идентификатор объекта]
ILS [OID ADDR_MEM] [получили адрес размещения в дисковой памяти]
LenPrioQue 1- PrioQueNUM
[получили номер отведенной для работы с объектом группы каналов]
[OID ADDR_MEM NUM]

C 2 Channels [OID ADDR_MEM NUM CHANOBJ]
NCHAN NBASECH - !NCHAN [получили номер базового канала]
C3 GOTO LCTX [OID ADDR_MEM NUM] [загрузили заголовок дискового объекта]
E2D [O N]
C 4 Channels [OID NUM CHANHIST] [получили канал для истории]
G_HIS ILS
[O N C HISTORY] [HISTORY д.б. 0]
GOTO NCHAN E2 LCTX [Открыли историю в канале] !NCHAN [O N]

C 3 Channels G_VAL ILS GOTO LCTX [временно открыли канал данных
напрямую с жесткого диска]
[LOADDM]

NOP [Здесь нужно установиться на объект в памяти и канал данных перекл. на него]
DD [] ;

VAR NCHANDAT
VAR NCHANOBJ LONG VAR LENDAT
: COPY_DAT1 [] NCHANOBJ 0 GOTOC [NCHANOBJ] NCHAN 0 GOTO 8 DO_IOBSCC D 14 OLS
0 OLS 10 GOTOC NCHAN 4 DO_IOBSCC DD -1 OLS -1 OLS LENDAT OLS LENDAT OLS
COPY_DAT ;

: GOTOC [NCHAN n] C2 S( NCHAN ) !NCHAN GOTO [NCHAN] ;

: COPY_DAT [] NCHANDAT NCHAN [SRC_CH DST_CH]
C2 !NCHAN LENVMEM [SRC_CH DST_CH LEN] 0 GOTO DO_IOBSCC DD ;

8. Контрольный пример, демонстрирующий возможности технологии

DB.NEW

Создадим объект "Поведение клоуна" для клоуна
[] "Поведение клоуна" CLONE_STR
[oid_str] OIDSET GET_BHR CLONE
[oid_str oid] SET_NAMEOBJ [oid]

Создадим объект "Клоун":
[.. ] "Клоун" CLONE_STR
[.. oid_str] CLONE_AGG
[.. oid_str oid] SET_NAMEOBJ [.. oid]

Определим ему поведение
[oid_bhr oid] SET_BHR

Определим в нем поля: X, Y, Цвет

"X" NEWFID SET_NAMEFID [fid] OIDINT "Клоун" NAMEOID AGG+F []

В ДССП можно определить новое слово
: NEWFIELD [ "Имя объекта" "Имя поля"] NEWFID SET_NAMEFID [A L FID]
OIDINT C4C4 NAMEOID AGG+F DD [] ;

"Клоун" "Y" NEWFIELD
"Клоун" "Цвет" NEWFIELD

Создадим методы.
Создать метод "Идти".
"" CLONE_STR [oid_kh]
[oid_kh] "Идти" CLONE_STR E2 C2 SET_KH [OID_STRKH]
"Поведение клоуна" NAMEOBJ SET+E

Аналогично создаются другие методы
...

Подготовка для вызова метода по идентификатору:
"Идти" CLONE_STR C "Клоун" NAMEOBJ METHOD? E2 DELOBJ
Подготовка для вызова метода по имени:
"Идти" CLONE_STR
Вызов
[oid] 0 "Клоун" NAMEOBJ [oid_mth 0 oid_obj] SEND

9. Оценка трудоемкости разработки ПО с использованием традиционного и предлагаемого подходов

В этом разделе будет проведен качественный анализ трудоемкости. Это связано, прежде всего, с особенностью языка реализации, отличного от классических ЯВУ.

Далее, в качестве примера, рассматривается следующая задача:
Клиенты имеют счета. Каждый счет увеличить на 10% и после этого пометить пользователя как получившего премию.

9.1 Табличные базы данных с низкоуровневыми операциями доступа

В качестве примера можно привести FoxPro 2.6 [11]. В ней есть недостаточное для обычных нужд подмножество SQL (SELECT, INSERT INTO); обычно взаимодействие с БД происходит с помощью операторов REPLACE, SCATTER, GATHER, SCAN … ENDSCAN и непосредственного присвоения с указанием в качестве префикса поля имени области, в которой открыта таблица. Такие программы практически непереносимы на клиент-серверные технологии, логика программ весьма сложна и приводит при программировании к трудно обнаруживаемым ошибкам. Достоинствами же являются простота реализации языка таких СУБД и малая требовательность к ресурсам.

Программный код обработки (MS FoxPro 2.6):

SELECT CLIENT
SCAN
SELECT SCHET
REPLACE SUMMA WITH SUMMA*1.1 FOR SCHET.NUM_SCH=CLIENT.NUM_SCH
SELECT CLIENT
REPLACE PREMIA WITH.T.
ENDSCAN

9.2 Реляционные базы данных

Реализация языка SQL позволяет работать с базой данных исключительно средствами SQL. Поддерживаются триггеры, отношения между таблицами, хранимые процедуры. Это типичные клиент-серверные СУБД. Управление целостностью данных возлагается на СУБД. Триггеры позволяют вынести практически все проверки из логики программы. Недостатком является необходимость нормализации таблиц, что затрудняет добавление новых таблиц при сопровождении программного средства, а иногда требует перенормализации, что влечет за собой необходимость изменять программный код, а значит, и новые ошибки.

Программный код обработки (MS Visual FoxPro 3.0 и выше):

BEGIN TRANSACTION
UPDATE SCHET SET SUMMA=SUMMA*1.1
WHERE NUM_SCH IN (SELECT NUM_SCH FROM CLIENT)
UPDATE CLIENT SET PREMIA =.T.
END TRANSACTION
9.3 Объектно-ориентированные базы данных

Позволяют хранить данные произвольной степени сложности (детали САПР) и вида (звук, изображение). Позволяют программировать на уровне инфологической модели, т.е. исчезают заботы о нормализации. Новые алгоритмы могут работать одновременно со старыми, обеспечивая преемственность. Например, если бухгалтерские проводки в следующем году проходят по новой схеме, переход на нужную схему в зависимости от даты СУБД выполнит сама.

Реализация для ООБД на формальном языке:

{«*»(1.1) ~> ?summa(?Client.num_sch=Schet.num_sch(Schet, Client)), «:=»(True) ~> ?Premia(Client)}

Порядок действий:

1 Умножение счетов на 1.1
1.1 Операция селекции выбирает множество счетов
1.2 Операция проекции выбирает интересующую часть счета – сумму
1.3 На суммы посылается операция «умножить» с аргументом 1.1

2 Пометка клиентов, как получивших премию
2.1 Операция проекции выделяет интересующую часть информации о клиенте – атрибут «премия»
2.2 Операция присвоения посылается на выделенный атрибут «премия» с аргументом True

Примечание 1: В операция селекции и проекции имеется некоторое отличие от операций реляционной алгебры. Например, операция проекции, выбирающая сумму, возвращает множество сумм. На самом деле множество сумм содержит не суммы, а идентификаторы атомарных объектов, хранящих суммы. Поэтому множество может содержать несколько одинаковых сумм и не теряется связь данных с оригинальным объектом-хранителем (счетом).
Примечание 2: Оба изменения происходят в пределах одной транзакции, поскольку эти действия являются экземплярами одного множества. Оба порядка действий: «сначала умножить, потом – пометить» и «Сначала пометить, потом – умножить» равноправны, поскольку действия хранятся в множестве. Если порядок важен, т.е. второе воздействие использует результат первого, то необходимо использовать не множество, а последовательность.
Операции над сложными структурами транзитивно распространяются на операции над компонентами по алгоритмам, описанным выше в разделе «Уточнение методов решения задачи». Таким образом, нет нужды во многих случаях писать циклы, обработку вложенных структур. Использование итераторов позволяет создавать собственный алгоритм выбора элементов для обработки циклов.

9.4 Будущее применения различных баз данных

В прошлые годы много внимания уделялось вопросу трудоемкости разработки программного обеспечения. Возросшая сложность программ и объемы используемых данных не позволяют начать разрабатывать новый продукт «с нуля». Теперь вперед выходят технологии, позволяющие создавать легко сопровождаемые программы.
Но реляционные базы данных, скорее всего, по-прежнему останутся в качестве недорогих средств разработки приложений и, во многих случаях, естественных средств представления предметной области, подобно радио и кино, которых не вытеснило телевидение.
10. Литература

[1] О.И.Авен Я.А.Коган “Управление вычислительным процессом” М. Энергия 1978
[2] А.М.Андреев Д.В.Березкин, Ю.А.Кантонистов «Среда и хранилище: ООБД»
Мир ПК №4 1998 (стр 74-81)
[3] М. Аткинсон, Ф. Бансилон и др. «Манифест систем объектно-ориентированных баз данных», СУБД № 4 1995
[4] В.Бобров "Объектно-ориентированные базы данных, мультимедийные типы данных и их обработка" Read.Me №4, 1996
[5] Н.П.Брусенцов, В.Б.Захаров и др. «Развиваемый адаптивный язык РАЯ диалоговой системы программирования ДССП» Москва МГУ 1987
[6] Бурцев А.А "Параллельное программирование. Учебное пособие по курсу "Операционные системы" - Обнинск : ИАТЭ, 1994 - 90 с.
[7] Бурцев А.А. «Сопрограммный механизм в ДССП как основа для построения мониторов параллельных процессов»
[8] Г.Буч «Объектно-ориентированное проектирование (с примерами применения)» М.Конкорд 1992
[9] К.Дж.Дейт «Введение в системы баз данных» 1998 Киев Диалектика
[10] Мутушев Д.М. Филиппов В.И. "Объектно-ориентированные базы данных" Программирование. - М., 1995 №6 стр. 59-76
[11] В.Ремеев «FoxPro. Версия 2.5 для MS-DOS. Описание команд и функций» М. «Мистраль» 1994
[12]СУБД № 2 1995 «Системы баз данных третьего поколения: Манифест»
[13]СУБД № 1 1996 «Стандарт систем управления объектными базами данных ODMG-93: краткий обзор и оценка состояния» Л.А.Калиниченко
[14]СУБД № 1 1996 «ТРЕТИЙ МАНИФЕСТ» Х.Дарвин, К.Дэйт
[15]СУБД № 5-6 1996 “Введение в СУБД часть 9” стр. 136-153 С.Д. Кузнецов

[16]Data & Knowledge Engineeging №15 (1995) стр 169-183 “Selection of object surrogates to support clustering” Jukka Teuhola
[17] Data & Knowledge Engineering. Amsterdam 1996 Том 18 №1 стр.29-54 "Unifying data, behaviours, and messages in object-oriented databases" Sylvia L. Osborn, Li Yu
[18] IEEE Transactions On Knowledge And Data Engineering Том 7 №2 Апрель 1995 стр. 274-292 «Security Constraint Processing in a Multilevel Secure Distributed Database Management System» B.Thuraisingham, W.Ford
[19] Journal of systems and software - N.Y., 1996 Том 35 №3 стр. 169-183
Shah P. Wong J. "Concurency control in a object-oriented data base system"

Документы в Internet (http://www.citforum.ru):

[20] В. Индриков, АО ВЕСТЬ “Объектно-ориентированный подход и современные мониторы транзакций”
[21] Л.Калиниченко “Архитектуры и технологии разработки интероперабельных систем”, Институт проблем информатики РАН
[22] С.Д. Кузнецов "Основы современных баз данных"
[23] С. Кузнецов “Безопасность и целостность, или Худший враг себе - это ты сам”

- 28 -



...

Страницы: 1 | [2] |




 




 
Показывать только:

Портфель:
Выбранных работ  

На данный момент в нашей базе:
Рефераты: 60160
Дипломные работы: 626
Курсовые работы: 2381
Шпаргалки: 1034
Доклады: 12078
Сочинения: 5238
Изложения: 1016
Топики: 1546
Бестселлеры: 9
Авторские материалы: 6802
Отчеты: 1

Всего работ: 90891

Рубрики по алфавиту:
АБВГДЕЖЗ
ИЙКЛМНОП
РСТУФХЦЧ
ШЩЪЫЬЭЮЯ

 

 

Ключевые слова страницы: Объектно-ориентированная СУБД (прототип) | реферат

НеСтудент © 2022 - Все для студентов, студенческие работы, студенческий портал.